STINK BUGS ON LITCHIS: Disrupting the migration cycle

Litchi tramautism

The litchi tramautism or stink bug is a major insect pest of Litchi chinensis that can cause significant economic losses. In recent years, there has been a growing interest in developing effective management strategies for this pest. One promising approach is to disrupt the migratory behavior of the stink bug, which can help to reduce its impact on Litchi orchards.

Materials and methods

The experiment was conducted in a Litchi orchard in KwaZulu-Natal, South Africa. The experiment was replicated three times with four treatments: 1) untreated, 2) insecticide treatment, 3) pheromone treatment, and 4) combined pheromone and insecticide treatment. The treatments were applied on the 1st of July 2019 and the stink bugs were monitored for a period of 3 months.

Results

The results showed that the combined pheromone and insecticide treatment significantly reduced the number of stink bugs in the orchard compared to the untreated and insecticide treatments. The pheromone treatment alone was also effective in reducing the number of stink bugs, but not as much as the combined treatment.

Conclusion

The results of this study suggest that disrupting the migration cycle of stink bugs can be an effective strategy for managing stink bug populations in Litchi orchards. Further research is needed to optimize the pheromone treatments and identify the best combination of pheromones and insecticides for effective stink bug management.

Boordbestuur: Januarie tot Maart

JANUARI
- Adresbestuur
- Bestuursvoorzitter
- Secretaris
- Boekhouder
- Leden van de Bestuursvoorzitter

FEBRUARI
- Leden van de Bestuursvoorzitter
- Bestuur
- Leden van de Bestuursvoorzitter

MAART
- Leden van de Bestuursvoorzitter
- Bestuur
- Leden van de Bestuursvoorzitter

Stink bugs on litchis: a study on the effectiveness of pheromone and insecticide treatments on Litchi chinensis. The study was conducted in a Litchi orchard in KwaZulu-Natal, South Africa. The experiment was replicated three times with four treatments: 1) untreated, 2) insecticide treatment, 3) pheromone treatment, and 4) combined pheromone and insecticide treatment. The treatments were applied on the 1st of July 2019 and the stink bugs were monitored for a period of 3 months.

The results showed that the combined pheromone and insecticide treatment significantly reduced the number of stink bugs in the orchard compared to the untreated and insecticide treatments. The pheromone treatment alone was also effective in reducing the number of stink bugs, but not as much as the combined treatment.

Conclusion

The results of this study suggest that disrupting the migration cycle of stink bugs can be an effective strategy for managing stink bug populations in Litchi orchards. Further research is needed to optimize the pheromone treatments and identify the best combination of pheromones and insecticides for effective stink bug management.